

Team Structure

- Team Leader:

Michael Blackwood NAR #101098 L2 Certified

- Safety Officer:

Pierce McGowan

- Team Mentor:

Art Upton
NAR #26255 L3 Certified

- NAR Section:

Jackson Model Rocketry Club Section #620 Team Leadership:

Michael Team Lead, Payload

System Lead

- Andrew Vehicle Body Lead,

Treasurer

- Peter Propulsion Lead, Secretary

Pierce Safety Officer
Patrick Recovery Lead

MarwanWilliamPayload Electronics LeadEducation/Outreach Lead

Vehicle Design Overview

Details

• Length: 86.97 inches

• Diameter: 4 inches

• Weight with motor: 22 lbs

Materials

• Airframe: G12 Fiberglass

• Fins: G10 Fiberglass

Flight Overview and Motor Choice

- Cesaroni 2330-K2000-VM-0
 - Launch mass: 89.9 oz
 - Projected apogee: 5350 ft
 - 98.1 ft/s off launch rod
 - Max velocity 750 ft/s
 - 0.67 Mach
- Thrust Curve
 - Maximum thrust: 2474 N
 - Burn Time: 1.15 s

Stability

Static Stability Margin: 2.07

- Distance to stable velocity: 1.97 feet

- Rail exit velocity: 98.1 ft/s

- Center of Pressure (CP): 68.59 inches

- Center of Gravity (CG): 60.33 inches

Recovery Subsystem

- StratologerCF
- Programmed to trigger blast caps at apogee for drogue and 700 ft for main.
- Two units
 - 2 grams of black powder are used for each blast cap.
 - Each unit given independent battery.
 - Each unit connects to a blast cap for the drogue and main chutes.

Recovery Subsystem (Cont.)

- TeleGPS Tracker unit
 - 434.55 MHz Ham Band
 - Interfaces with ground station to output altitude, velocity, and GPS location
- Kinetic Energy at Impact
 - Energy: 65.0 ft-lbf
 - Maximum permissible Energy is 75 ft-lbf
- Nylon Rip Stop Shock Cords
- Nomex Fire Resistant Blankets
- 2 StratologgerCF altimeters

Drift Distances

Wind Speed (mph)	Drift Distance (ft.)
0	7
5	500
10	1000
15	1550
20	2090

Payload Subsystem

- The payload will consist of an active surface controlling the roll of the rocket during flight.
- Single Servo controlling a differential
 - All four control surfaces will move in sync
- Control surfaces will be connected via a rod system which will secure using set screws
 - Control surfaces are 3D printed with high strength ABS plastic
- Electronics
 - Reads and stores sensor data
 - Directs control loop
 - Includes 9DOF inertial measurement unit
 - Gyroscopes
 - Accelerometer
 - Magnetometer

Payload Integration

- Electronics bay sits above the motor mount
- Electronics will be held in place by a series of 3D printed parts
 - The red section is used to hold the batteries
 - Blue and yellow will hold the PCB between them
- The servo will be fixed to a fiberglass support mount
- A second fiberglass support mount will hold the eye bolt and one side of the threaded rods used to hold the payload section together

Full Scale Test Flight

Motor Used: Aerotech J401FJ-P

- In simulation the rocket reached an apogee of 2001 ft. During the actual flight, apogee was 1978 ft. The simulation was off by 23 feet, or 1.09%.

Full Scale Test Flight (Cont.)

- Payload Analysis
 - Raw Accelerometer and gyroscope data was obtained
 - Launch was detected, burnout was detected late
 - G threshold for burnout was too high for the motor used

Launch Day Preparations

- Checklist for Safety Precautions
- Checklist for Payload setup
- Checklist for Recovery preparation
- Checklist for Motor preparation
- Checklist for setup on launchpad

Educational Engagement

Past:

- Presented to Ida Middle School
 - Subscale launch
- Engineering Week (E-Week) Balloon rocket activity

Future:

- UTEC Easter Egg hunt
- St. Bernard Grade School

Budget

2016-2017 Funding Plan		
Source	Amount	Status
2015-2016 Excess	\$ 2,658.31	Acquired
Marathon	\$ 2,000.00	Acquired
DTE Energy	\$ 250.00	Awaiting
Rotary Club	\$ 500.00	Awaiting
UT MIME Department	\$ 1,500.00	Acquired
Total	\$ 6,908.31	

Future Work

- Paint Cairo
- Pack for Huntsville!

